288 research outputs found

    Thermally-activated Non-Schmid Glide of Screw Dislocations in W using Atomistically-informed Kinetic Monte Carlo Simulations

    Full text link
    Thermally-activated \small{\nicefrac{1}{2}} screw dislocation motion is the controlling plastic mechanism at low temperatures in body-centered cubic (bcc) crystals. Motion proceeds by the nucleation and propagation of atomic-sized kink pairs susceptible of being studied using molecular dynamics (MD). However, MD's natural inability to properly sample thermally-activated processes as well as to capture {110}\{110\} screw dislocation glide calls for the development of other methods capable of overcoming these limitations. Here we develop a kinetic Monte Carlo (kMC) approach to study single screw dislocation dynamics from room temperature to 0.5Tm0.5T_m and at stresses 0<σ<0.9σP0<\sigma<0.9\sigma_P, where TmT_m and σP\sigma_P are the melting point and the Peierls stress. The method is entirely parameterized with atomistic simulations using an embedded atom potential for tungsten. To increase the physical fidelity of our simulations, we calculate the deviations from Schmid's law prescribed by the interatomic potential used and we study single dislocation kinetics using both projections. We calculate dislocation velocities as a function of stress, temperature, and dislocation line length. We find that considering non-Schmid effects has a strong influence on both the magnitude of the velocities and the trajectories followed by the dislocation. We finish by condensing all the calculated data into effective stress and temperature dependent mobilities to be used in more homogenized numerical methods

    Ladder proof of nonlocality for two spin-half particles revisited

    Full text link
    In this paper we extend the ladder proof of nonlocality without inequalities for two spin-half particles given by Boschi et al [PRL 79, 2755 (1997)] to the case in which the measurement settings of the apparatus measuring one of the particles are different from the measurement settings of the apparatus measuring the other particle. It is shown that, in any case, the proportion of particle pairs for which the contradiction with local realism goes through is maximized when the measurement settings are the same for each apparatus. Also we write down a Bell inequality for the experiment in question which is violated by quantum mechanics by an amount which is twice as much as the amount by which quantum mechanics violates the Bell inequality considered in the above paper by Boschi et al.Comment: LaTeX, 7 pages, 1 figure, journal versio

    A feasible quantum optical experiment capable of refuting noncontextuality for single photons

    Full text link
    Elaborating on a previous work by Simon et al. [PRL 85, 1783 (2000)] we propose a realizable quantum optical single-photon experiment using standard present day technology, capable of discriminating maximally between the predictions of quantum mechanics (QM) and noncontextual hidden variable theories (NCHV). Quantum mechanics predicts a gross violation (up to a factor of 2) of the noncontextual Bell-like inequality associated with the proposed experiment. An actual maximal violation of this inequality would demonstrate (modulo fair sampling) an all-or-nothing type contradiction between QM and NCHV.Comment: LaTeX file, 8 pages, 1 figur

    Two-particle entanglement as a property of three-particle entangled states

    Full text link
    In a recent article [Phys. Rev. A 54, 1793 (1996)] Krenn and Zeilinger investigated the conditional two-particle correlations for the subensemble of data obtained by selecting the results of the spin measurements by two observers 1 and 2 with respect to the result found in the corresponding measurement by a third observer. In this paper we write out explicitly the condition required in order for the selected results of observers 1 and 2 to violate Bell's inequality for general measurement directions. It is shown that there are infinitely many sets of directions giving the maximum level of violation. Further, we extend the analysis by the authors to the class of triorthogonal states |Psi> = c_1 |z_1>|z_2>|z_3> + c_2 |-z_1>|-z_2>|-z_3>. It is found that a maximal violation of Bell's inequality occurs provided the corresponding three-particle state yields a direct ("all or nothing") nonlocality contradiction.Comment: REVTeX, 7 pages, no figure

    Independent Set Reconfiguration in Cographs

    Get PDF
    We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets II and JJ of a graph GG, both of size at least kk, is it possible to transform II into JJ by adding and removing vertices one-by-one, while maintaining an independent set of size at least kk throughout? This problem is known to be PSPACE-hard in general. For the case that GG is a cograph (i.e. P4P_4-free graph) on nn vertices, we show that it can be solved in time O(n2)O(n^2), and that the length of a shortest reconfiguration sequence from II to JJ is bounded by 4n−2k4n-2k, if such a sequence exists. More generally, we show that if XX is a graph class for which (i) TAR-Reachability can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and which satisfies a certain additional property, then the problem can be solved efficiently for any graph that can be obtained from a collection of graphs in XX using disjoint union and complete join operations. Chordal graphs are given as an example of such a class XX

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent

    Three-particle entanglement versus three-particle nonlocality

    Full text link
    The notions of three-particle entanglement and three-particle nonlocality are discussed in the light of Svetlichny's inequality [Phys. Rev. D 35, 3066 (1987)]. It is shown that there exist sets of measurements which can be used to prove three-particle entanglement, but which are nevertheless useless at proving three-particle nonlocality. In particular, it is shown that the quantum predictions giving a maximal violation of Mermin's three-particle Bell inequality [Phys. Rev. Lett. 65, 1838 (1990)] can be reproduced by a hybrid hidden variables model in which nonlocal correlations are present only between two of the particles. It should be possible, however, to test the existence of both three-particle entanglement and three-particle nonlocality for any given quantum state via Svetlichny's inequality.Comment: REVTeX4, 4 pages, journal versio

    Bayesian Nash Equilibria and Bell Inequalities

    Full text link
    Games with incomplete information are formulated in a multi-sector probability matrix formalism that can cope with quantum as well as classical strategies. An analysis of classical and quantum strategy in a multi-sector extension of the game of Battle of Sexes clarifies the two distinct roles of nonlocal strategies, and establish the direct link between the true quantum gain of game's payoff and the breaking of Bell inequalities.Comment: 6 pages, LaTeX JPSJ 2 column format, changes in sections 1, 3 and 4, added reference

    Multiparty multilevel Greenberger-Horne-Zeilinger states

    Get PDF
    The proof of Bell's theorem without inequalities by Greenberger, Horne, and Zeilinger (GHZ) is extended to multiparticle multilevel systems. The proposed procedure generalizes previous partial results and provides an operational characterization of the so-called GHZ states for multiparticle multilevel systems.Comment: REVTeX, 5 pages, 1 figur

    A Simulated Environment for Testing 4D Detect See and Avoid Scenarios for UAVs

    Get PDF
    A synthetic environment has been developed which permits the realistic simulation of encounter scenarios of two small aircraft. This may be used to develop and test Detect Sense and Avoid (DSA) strategies for Unmanned Aerial Vehicles (UAVs). A novel maneuver has been invented that simplifies the generation of air-to-air encounters. This “Phi Maneuver” guarantees a variety of encounter geometries, and at least one encounter for each pass of the Intruder aircraft through the loiter zone of the Target aircraft. This provides an effect way to test multiple DSA scenarios and generate statistics on the relative merits of a particular DSA method
    • 

    corecore